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Tertiary diamides of xanthene-1,8-dicarboxylic acid and biphe-

nyl-2,29-dicarboxylic acid exhibit a thermodynamic preference

for anti stereochemistry which is inverted in the presence of Ti-

or Sn-based Lewis acids, allowing interconversion between

kinetically stable syn and anti diastereoisomeric atropisomers.

The conversion of a macroscopic influence (temperature, photo-

chemical, pH, redox or presence of a metal ion) to a change in

shape or structure on the molecular scale is essential to the

development of molecular devices or receptors.1 A variety of

structures have been reported to exhibit switching properties.2

However, for switches to be functional, the structural change that

occurs on switching has to be ‘‘readable’’—there must be a

measurable consequence of the switching process. Aromatic

amides have been shown to be powerful controllers of a range

of molecular conformational and reactivity properties,3,4 and the

ability to switch them from one orientation to another would

provide a powerful basis for a family of molecular devices.5 In this

communication we report such a switching process for two classes

of amides, in which reversible conversion from one orientation to

another is determined by heating in the presence or absence of a

chelating metal ion.

The amide groups of fully N-substituted xanthene-1,8-dicarbox-

amides 1 exhibit a thermodynamic preference for anti conformers,

presumably due to dipole repulsion (Fig. 1).3,6,7 Since the relatively

electron rich oxygen atom of an amide is also a powerful

coordinator of metal ions, we set out to use chelation of a metal

by dicarboxamides8 related to 1 as a means of switching anti

stereochemistry to syn.

Initial studies were carried out in an NMR tube. A solution of

1a in CDCl3 was titrated with titanium tetrachloride. As illustrated

for 1a in Fig. 2, on addition of 2 equiv. of TiCl4, a single new

symmetrical complex had formed (Scheme 1). This complex

evidently had syn stereochemistry since the 6H singlet (labelled u)
due to the gem-dimethyl group of the starting material had split

into a pair of diastereotopic 3H singlets (labelled *). Addition

of water to this syn-1a?[Ti] complex returned pure anti-1a—the

anti A syn switch was reversed on aqueous work-up, presumably

because the barrier to interconversion of the diastereoisomers of 1a

is too low to allow isolation of syn-1a.

Structures 1b and 1c, which incorporate 2,7-disubstitution, were

expected6,9 to possess diastereoisomeric conformers with a higher

barrier to interconversion, and therefore may offer the possibility

of isolation of the less stable syn atropisomer of 1. anti-1b and

anti-1c were made by double ortho-lithiation6,10 of 1a. In both, the
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Fig. 1 syn And anti xanthenedicarboxamides.

Fig. 2 Conversion of anti to syn xanthenedicarboxamide.

Scheme 1 Conversion of anti to syn xanthenedicarboxamide.
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gem-dimethyl group was apparent as a 6H singlet, and 1c was

separable by HPLC on a chiral stationary phase into two

enantiomers. Silane 1b was not resolvable, probably because the

SiMe3 groups provide an insufficiently high barrier to interconver-

sion of the enantiomers of the anti isomer.9 Addition of two

equivalents of TiCl4 to 1b in CDCl3 showed no immediate change

in structure, but heating this mixture to +50 uC led to formation of

the Ti complex of syn-1d (as indicated by the appearance of two

3H singlets). The conversion of anti-1c to syn-1c in the presence of

2 equiv. TiCl4 was slower, but was complete in 3 h at +50 uC. Both

solutions were cooled to 250 uC and CD3OD was added to release

the syn-1 from the Ti complexing agent. An NMR spectrum

acquired immediately after decomplexation showed however that

conversion to anti-1b or anti-1c is almost instantaneous: uncom-

plexed syn-1 evidently has a very low barrier to relaxation to anti-1

even at low temperature.

Biphenyl-2,29-dicarboxamides 2 exhibit a rather weaker pre-

ference for anti stereochemistry (Fig. 3),3 and both syn and anti

biphenyldicarboxamides exhibit kinetic stability and have pre-

viously been isolated.11 We therefore also explored this class of

molecule as substrates for selective switching using metal ions.

Biphenyl-2,29-dicarboxamide 2a was ortho-lithiated10,11 and

iodinated (either directly or, for higher yields, via 2b, treating 2b

with iodine monochloride) to yield 2c as a mixture of

diastereoisomers with syn-2c predominating. Identification of the

stereochemistry of the diastereoisomers of 2c was made easy by the

fact that syn-2c, which is achiral, gives a single peak on analysis by

HPLC on a chiral stationary phase, while anti-2c, which is chiral,

gives a pair of peaks. Both diastereoisomers were furthermore

crystalline, and Fig. 4 shows their X-ray crystal structures.§

Heating syn-2c in a variety of solvents caused it to convert to

anti-2c with solvent-dependent stereoselectivity (Table 1). In

toluene, up to 10 : 1 selectivity for anti-2c was obtained, reducing

to 2 : 1 in polar solvents. Presumably the preference for anti

stereochemistry is driven by dipole repulsion,12 which is greatest in

non-polar solvents. Monitoring epimerisation from syn to anti-2c

in toluene at 77 uC allowed evaluation of a half-life for this

process of 32.2 h, corresponding to a barrier to interconversion

syn-2c A anti-2c of 109.5 kJ mol21 and from anti-2c A syn-2c of

103.1 kJ mol21. anti-2c was dissolved in toluene and treated with two equiv.

TiCl4 (Scheme 2). No change was evident by TLC, but on heating

in toluene, followed by aqueous work-up, an almost complete

switch to syn-2c, evident by TLC and NMR spectroscopy and

quantified by HPLC analysis, was observed (Table 2, entry 1).

Similar results were obtained on treating anti-2c with 2 equiv.

SnCl4. With just one equiv. SnCl4, or with other Lewis acids

Fig. 3 syn And anti biphenyl-2,29-dicarboxamides.

Fig. 4 a: X-Ray crystal structure of anti-2c; b: X-ray crystal structure of

syn-2c.

Table 1 Solvent dependent stereoselectivity in the isomerisation of
syn A anti-2c

Entry Solvent Ratio anti-2c : syn-2ca

1 Toluene 91 : 9
2 EtOAc 84 : 16
3 DMEb 82 : 18
4 THF 83 : 17
5 MeOH 77 : 23
6 MeCN 74 : 26
7 AcOH 67 : 33
a Determined by NMR spectroscopy. b DME = dimethoxyethane.

Scheme 2 Conversion of anti to syn biphenyl-2,29-dicarboxamide 2c.
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(EtAlCl2, Ti(Oi-Pr)4, Ti(Oi-Pr)2Cl2) lower selectivities were

observed, as indicated in Table 2.

In summary, it is possible to switch both xanthenedicarbox-

amides 1 and biphenyl-2,29-dicarboxamides 2 from their ground

state anti conformation to a syn conformation by coordination

with Ti or Sn derived Lewis acids. In the case of 1 the syn

diastereoisomer is too unstable to exist in the absence of a Lewis

acid, but 2 may be decomplexed and remains stable until heating

returns it to the anti isomer.
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Table 2 Lewis acid dependent stereoselectivity in the isomerisation of
anti A syn-2c

Entry Lewis acid Equiv. Isolated ratio syn-2c : anti-2ca

1 TiCl4 2 98 : 2
2 SnCl4 2 98 : 2
3 SnCl4 1 83 : 17
4 Sn(OTf)2 2 93 : 7
5 Sn(OTf)2 1 67 : 33
6 Zn(OTf)2 2 46 : 54
7 EtAlCl2 2 43 : 57
8 Ti(Oi-Pr)2Cl2 2 52 : 48
9 Ti(Oi-Pr)4 2 9 : 91
a Determined by HPLC analysis.
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